NeVAE: A Deep Generative Model for Molecular Graphs
نویسندگان
چکیده
منابع مشابه
GraphRNN: A Deep Generative Model for Graphs
Modeling and generating graphs is fundamental for studying networks in biology, engineering, and social sciences. However, modeling complex distributions over graphs and then efficiently sampling from these distributions is challenging due to the non-unique, high-dimensional nature of graphs and the complex, non-local dependencies that exist between edges in a given graph. Here we propose Graph...
متن کاملA Generative Model for Deep Convolutional Learning
A generative model is developed for deep (multi-layered) convolutional dictionary learning. A novel probabilistic pooling operation is integrated into the deep model, yielding efficient bottom-up (pretraining) and top-down (refinement) probabilistic learning. Experimental results demonstrate powerful capabilities of the model to learn multi-layer features from images, and excellent classificati...
متن کاملLearning Deep Generative Models of Graphs
Graphs are fundamental data structures which concisely capture the relational structure in many important real-world domains, such as knowledge graphs, physical and social interactions, language, and chemistry. Here we introduce a powerful new approach for learning generative models over graphs, which can capture both their structure and attributes. Our approach uses graph neural networks to ex...
متن کاملA Deep Generative Deconvolutional Image Model
A deep generative model is developed for representation and analysis of images, based on a hierarchical convolutional dictionary-learning framework. Stochastic unpooling is employed to link consecutive layers in the model, yielding top-down image generation. A Bayesian support vector machine is linked to the top-layer features, yielding max-margin discrimination. Deep deconvolutional inference ...
متن کاملA Deep Generative Model for Disentangled Representations of Sequential Data
We present a VAE architecture for encoding and generating high dimensional sequential data, such as video or audio. Our deep generative model learns a latent representation of the data which is split into a static and dynamic part, allowing us to approximately disentangle latent time-dependent features (dynamics) from features which are preserved over time (content). This architecture gives us ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33011110